Motivation

Electricity Shortage is knocking our doors

In Taiwan, insufficient electricity supply is always an important issue. Especially in summer, we are usually under the risk of power outage. Sometimes, it really happened(8/17 Power Outage in Taiwan)In both Trends of Demand and Stability imply electricity shortage will be an even serious problem.

Electricity demand is ascending

In the past 4 years, the demand of electricity in Taiwan has increased about 8%. Furthermore, our government intends to shut down all the nuclear power plants by 2025. In fact, nuclear power plants account for 14% of total electricity supply.

Electricity supply becomes unstable

Operating reserve rate keeps decreasing and it hasn’t achieved the goal set by Taipower corp. 4 years in a row. Low operating reserve rate implies any unexpected power plant shut down Taiwan will suffer from power outage.

Current policies are paved with good intentions but inefficient

Although the government enforce a bunch of different policies to solve this problem, it isn’t effective at all. For example Save the electricity on your own, Countrywide Electricity saving completion. However, governors didn’t clarify the reasons of wasting electricity for different regions. Without comprehending the actual reasons of wasting electricity, how can they come up with an appropriate policy to curb the electricity waste.

Our goal

The Electricity saving policies enforcing process can be broken down into 3 parts, Identify the regions wasting electricity, figure out the reasons they wasting, and Set up corresponding policies. Our product was designed to shorten the time consumed during this process and help governors apply the right policies on the right regions.

How we achieve our goal? U-Optimizer

To customize the policies by region is the key of achieving our goal. We utilized a lot of open data, Including demographics data, economic data, electricity usage data ….etc. Besides, we use both supervised and unsupervised machine learning methodologies to cluster the villages around Taiwan. In the end, we want to deliver a system which can assist governors to arrange the current policies to appropriate villages or set up a whole new policy for specific villages.

4 countries’ MAP

Column

Taiwan

Taiwan

Japan

Japan

Column

Korea

Korea

Thailand

Thailand

4 countries’ Data

Data


Taiwan Open data



Detail Description

Analysis Process

Analysis Process

1. Cleane twelve data set separately.
2. Merge data that cleaned together.
3. Use “Greedy Search” that include “Loss fuction” and “K-means” to find out key features.
4. At the same time, cluster data into five groups.
5. Use electricity use per household on each cluster to find the target audiance.



Processed Data

Processed Data

Radar Data

Column

Radar Data

Column

Index Variables

1. Dependency_ratio

扶養比:(少年人口+老年人口)/壯年人口

  • 少年人口:0~14歲的人口
  • 壯年人口:15~64歲的人口
  • 老年人口:65以上的人口

2. Education_under_college

大學以下比例

3. No_elderly_rate

無老年人口戶數比例:這個里中無老年人口戶數的比例

4. Three_olderly

三位以上老年人口戶數.戶:這個里中有三位以上老人的戶數

5. One_household

1戶一宅宅數

Cluster

Column

Single Vulnerable Group

Senior Group

Young Working Group

Nuclear Family

High Educated Group

Summary

Column

Outcome

Cluster1 : Single Vulnerable Group

很明顯的教育程度大學以下比例相當高,且老人沒有太多扶養比相對較低的單身族群,有名的一戶百口人的洲美里在這一群中,這群的戶均用電最低。

Cluster2 : Senior Group

除了三位以上老人戶數比例偏高外,各項指標皆與總體中位數幾乎重疊,故比較起來為年齡偏高的族群。

Cluster3 :Young Working Group

無老人的比例偏高,扶養比偏低,有第二高的教育程度大學以下比例

Cluster4 :Nuclear Family

一戶一宅的比例最高,而無老人的比例最高,但扶養比表現正常,代表可能是一般常見的父母與小孩的核心家庭,是用電量是屬於偏高的族群

Cluster5 :High Educated Group

教育程度是大學以下比例最低,無老人的比例是低的,且有最高的扶養比,代表應該有部分老人也有小孩,用電量是屬於偏高的族群。

Five Groups

Electricity use of per household in five groups

Cluster4 vs Cluster5

Column

Cluster 4: Nuclear Family vs Cluster 5: High Educated Group

Column

Description

HIGH Electricity Utilization Nuclear Family vs High Educated Group


Both Cluster4 and Cluster5 are high electricity utilization regions. But we can tell the different from them.

Cluster 1 vs Cluster2

Column

Cluster 1:Single Vulnerable Group vs Cluster 3: Young Working Group

Column

Description

LOW Electricity Utilization Single Vulnerable Group vs Senior Group


Cluster 1 - Single Vulnerable Group and cluster 3 - Young Working Group are lower electricity use than total median.

Radar chart

All radar chart

ClusterMap

Column

Map

Column

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

Waste of electricity

Column

Map

Column

Outcome

The characteristics of the people who waste electricity


1. Senior Group

  • High educated
  • High income
  • High variation of electricity utilization

2. Senior Group

  • Multiple person in one household
  • High variation of electricity utilization

3. Young Working Group

  • High income
  • High variation of electricity utilization

4. Nuclear Family

  • High educated
  • High income
  • High variation of electricity utilization

5. High Educated Group

  • High income
  • More elderly people
  • High variation of electricity utilization

Conclusion

Efficiency Evaluation


---
title: "2017 ASIA Hackathon"
output: 
  flexdashboard::flex_dashboard:
    source_code: embed
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(
  message = FALSE,
	warning = FALSE
  )
library(flexdashboard)
library(data.table)
library(dplyr)
library(ggplot2)
library(plotly)
library(highcharter)
library(DT)
# 讀入分群完的原始資料
# tp_cluster <- fread("processed_data/taipei456_cluster.csv")
tp_cluster <- fread("processed_data/taipei456_2.csv")
# 雷達圖資料
cluster_rader<-read.csv("processed_data/radar_plot.csv",fileEncoding = 'utf8')
# 四國資料 
asia <- fread("processed_data/Asia.csv")
```


Motivation {#motivation1 data-navmenu="Motivation"}
=====================================   

Electricity Shortage is knocking our doors

In Taiwan, insufficient electricity supply is always an important issue. Especially in summer, we are usually under the risk of power outage. Sometimes, it really happened[(8/17 Power Outage in Taiwan)](https://udn.com/news/story/11419/2644282)In both Trends of Demand and Stability imply electricity shortage will be an even serious problem.

Electricity demand is ascending

In the past 4 years, the demand of electricity in Taiwan has increased about 8%. Furthermore, our government intends to shut down all the nuclear power plants by 2025. In fact, nuclear power plants account for 14% of total electricity supply.

Electricity supply becomes unstable

Operating reserve rate keeps decreasing and it hasn’t achieved the goal set by Taipower corp. 4 years in a row. Low operating reserve rate implies any unexpected power plant shut down Taiwan will suffer from power outage.

Current policies are paved with good intentions but inefficient

Although the government enforce a bunch of different policies to solve this problem, it isn’t effective at all. For example [Save the electricity on your own](http://energy-smartcity.energypark.org.tw/), [Countrywide Electricity saving completion.](http://energy-2016summer.energypark.org.tw/) However, governors didn’t clarify the reasons of wasting electricity for different regions. Without comprehending the actual reasons of wasting electricity, how can they come up with an appropriate policy to curb the electricity waste.

Our goal

The Electricity saving policies enforcing process can be broken down into 3 parts, Identify the regions wasting electricity, figure out the reasons they wasting, and Set up corresponding policies. Our product was designed to shorten the time consumed during this process and help governors apply the right policies on the right regions.

How we achieve our goal? U-Optimizer

To customize the policies by region is the key of achieving our goal. We utilized a lot of open data, Including demographics data, economic data, electricity usage data ….etc. Besides, we use both supervised and unsupervised machine learning methodologies to cluster the villages around Taiwan. In the end, we want to deliver a system which can assist governors to arrange the current policies to appropriate villages or set up a whole new policy for specific villages. 4 countries' MAP{#motivation2 data-navmenu="Motivation"} ===================================== Column {data-width=500} ------------------------------------- ### Taiwan Taiwan ### Japan Japan Column {data-width=500} ------------------------------------- ### Korea Korea ### Thailand Thailand 4 countries' Data {#motivation3 data-navmenu="Motivation"} ===================================== ```{r} asia %>% dplyr::select(2,3,8,5,9,6,7,11) %>% DT::datatable( options = list(pageLength = 30)) ``` Data {#data-describe data-navmenu="Analysis"} =====================================

Taiwan Open data

- [Taiwan Power Company Open Data](http://www.taipower.com.tw/content/announcement/ann01.aspx?BType=31)
- [Taiwan Educational Level](http://data.gov.tw/node/8409)
- [Income Tax Data](http://data.gov.tw/node/17983)
- [Population Data](http://data.moi.gov.tw/MoiOD/Data/DataDetail.aspx?oid=F4478CE5-7A72-4B14-B91A-F4701758328F)
- [Household Data](http://data.moi.gov.tw/MoiOD/Data/DataDetail.aspx?oid=F4478CE5-7A72-4B14-B91A-F4701758328F)
- [Ranks of Total Retail Sales](https://moeagis.carto.com/viz/b5e9f4e8-dc7c-11e6-8815-0ef24382571b/public_map)
- [Registered Business Sectors](http://ronnywang-twcompany.s3-website-ap-northeast-1.amazonaws.com/index.html)
- [Housing Login Prices](http://plvr.land.moi.gov.tw/DownloadOpenData)
- [Park Data](https://sheethub.com/data.taipei.gov.tw/%E8%87%BA%E5%8C%97%E5%B8%82%E9%84%B0%E9%87%8C%E5%85%AC%E5%9C%92%E9%BB%9E%E4%BD%8D%E8%B3%87%E6%96%99)
- [電線桿 Data]()
- [Trash Data]()
- [行道樹 Data]()
---------------

Detail Description

- 使用2016年7月、8月的非營業電力資料分析
- 使用2016年教育程度的資料,合理推估2016年7月、8月的教育程度狀況
- 所得稅資料之涵蓋範圍為2013年,假設2013年與2016年之人口結構相似進行推估
- 人口統計資料之最新資料為2015年,合理假設2015年與2016年之人口結構相似,因此使用2015年推估2016年
- 使用2016第三季之住宅統計資料
- 使用2016零售業銷售金額之村里排名
- 累積至2017年7月之營業商家登記數
- 使用2014年-2016年之實價登錄資料
- 累積至2015年7月之公園數量與坪數
- 2016年電線桿分佈與數目
- 2016年垃圾量資料
- 2017年台北市行道樹量
Analysis Process {#analysis2 data-navmenu="Analysis"} =====================================

Analysis Process

1. Cleane twelve data set separately.
2. Merge data that cleaned together.
3. Use "Greedy Search" that include "Loss fuction" and "K-means" to find out key features.
4. At the same time, cluster data into five groups.
5. Use electricity use per household on each cluster to find the target audiance.


Processed Data {#analysis1 data-navmenu="Analysis"} ===================================== ### Processed Data ```{r} tp_cluster %>% select(行政區域,人口數,戶均用電,青少年人口,壯年人口,老年人口,綜合所得總額,中位數,房價中位數,商家數,公園數,公園坪數,每戶平均人數,博士比例,碩士比例,大學比例,大學以下比例,平均屋齡,零售排名,有偶比例..., 每戶平均老年人口數.人.,無老年人口戶數比例...,三位以上老年人口戶數比例...,X1戶一宅.宅.) -> origin colnames(origin) = c("Region", "Population", "Electricity", "teenager", "Prime age", "elderly", "Total income", "Med_Income","Med_housing_price", "Business Sectors", "park", "Park pings", "population/household", "Ph.D.%","Master%", "College%", "Under college%", "House age", "retail rank", "Marriage_rate", "Older_population/household", "No_elderly_rate","Three_elderly_rate","One_houdehold" ) origin %>% DT::datatable(options = list(pageLength = 30)) %>% formatRound(c(3,13:18),digits = 3) ``` Radar Data {#analysis3 data-navmenu="Analysis"} ===================================== Column {data-width=620} ------------------------------------- ### Radar Data ```{r} tp_cluster %>% select(行政區域,分群,大學以下比例, 扶養比,無老年人口戶數比例...,三位以上老年人口戶數比例...,X1戶一宅.宅., 戶均用電) -> radar_data names(radar_data) = c("Region","Cluster","Education_under_college", "Dependency_ratio","No_eldery_one", "Three_elderly_rate","One_houdehold", "Electricity") radar_data$Cluster = as.character(radar_data$Cluster) radar_data[radar_data$Cluster == "1", "Cluster"] <- "Cluster1" radar_data[radar_data$Cluster == "2", "Cluster"] <- "Cluster2" radar_data[radar_data$Cluster == "3", "Cluster"] <- "Cluster3" radar_data[radar_data$Cluster == "4", "Cluster"] <- "Cluster4" radar_data[radar_data$Cluster == "5", "Cluster"] <- "Cluster5" radar_data %>% dplyr::select(-Electricity) %>% DT::datatable(options = list(pageLength = 30)) %>% formatRound(3:9,digits = 3) ``` Column {data-width=380} ------------------------------------- ### Index Variables 1. Dependency_ratio 扶養比:(少年人口+老年人口)/壯年人口 - 少年人口:0~14歲的人口
- 壯年人口:15~64歲的人口
- 老年人口:65以上的人口 2. Education_under_college 大學以下比例 3. No_elderly_rate 無老年人口戶數比例:這個里中無老年人口戶數的比例 4. Three_olderly 三位以上老年人口戶數.戶:這個里中有三位以上老人的戶數 5. One_household 1戶一宅宅數 Cluster{#cluster} ===================================== Column {.tabset .tabset-fade} ------------------------------------- ### Single Vulnerable Group ```{r} ## color #col.raw <- c("#1d3156","#ff9c63","#7dbfc6","#00b1c9","#ea8ca7","#ffd2a0") #col.raw <- c("#1d3156","#66c2a5","#ffd92f","#fc8d62","#e78ac3","#8da0cb") col.raw <- c("#1d3156","#984ea3","#4daf4a","#ff7f00","#e41a1c","#377eb8") ## cluster 1 v.s median highchart() %>% hc_chart(polar = TRUE, type = "line") %>% hc_title(text = "Cluster 1 : Single Vulnerable Group ") %>% hc_xAxis(categories = cluster_rader$index, tickmarkPlacement = 'on', lineWidth = 0) %>% hc_yAxis(gridLineInterpolation = 'polygon', lineWidth = 0, min = 0, max = 1) %>% hc_series( list( name = "cluster 1 ", data = cluster_rader$第一群, pointPlacement = 'on',color=col.raw[2]), list( name = "median ", data = cluster_rader$med, pointPlacement = 'on',color=col.raw[1]) ) ``` ### Senior Group ```{r} ## cluster 2 v.s median highchart() %>% hc_chart(polar = TRUE, type = "line") %>% hc_title(text = "Cluster 2: Senior Group") %>% hc_xAxis(categories = cluster_rader$index, tickmarkPlacement = 'on', lineWidth = 0) %>% hc_yAxis(gridLineInterpolation = 'polygon', lineWidth = 0, min = 0, max = 1) %>% hc_series( list( name = "cluster 2 ", data = cluster_rader$第二群, pointPlacement = 'on',color=col.raw[3]), list( name = "median ", data = cluster_rader$med, pointPlacement = 'on',color=col.raw[1]) ) ``` ### Young Working Group ```{r} ## cluster 3 v.s median highchart() %>% hc_chart(polar = TRUE, type = "line") %>% hc_title(text = "Cluster 3 : Young Working Group") %>% hc_xAxis(categories = cluster_rader$index, tickmarkPlacement = 'on', lineWidth = 0) %>% hc_yAxis(gridLineInterpolation = 'polygon', lineWidth = 0, min = 0, max = 1) %>% hc_series( list( name = "cluster 3 ", data = cluster_rader$第三群, pointPlacement = 'on',color=col.raw[4]), list( name = "median ", data = cluster_rader$med, pointPlacement = 'on',color=col.raw[1]) ) ``` ### Nuclear Family ```{r} ## cluster 4 v.s median highchart() %>% hc_chart(polar = TRUE, type = "line") %>% hc_title(text = "Cluster 4 : Nuclear Family") %>% hc_xAxis(categories = cluster_rader$index, tickmarkPlacement = 'on', lineWidth = 0) %>% hc_yAxis(gridLineInterpolation = 'polygon', lineWidth = 0, min = 0, max = 1) %>% hc_series( list( name = "cluster 4 ", data = cluster_rader$第四群, pointPlacement = 'on',color=col.raw[5]), list( name = "median ", data = cluster_rader$med, pointPlacement = 'on',color=col.raw[1]) ) ``` ### High Educated Group ```{r} ## cluster 5 v.s median highchart() %>% hc_chart(polar = TRUE, type = "line") %>% hc_title(text = "Cluster 5 : High Educated Group") %>% hc_xAxis(categories = cluster_rader$index, tickmarkPlacement = 'on', lineWidth = 0) %>% hc_yAxis(gridLineInterpolation = 'polygon', lineWidth = 0, min = 0, max = 1) %>% hc_series( list( name = "cluster 1 ", data = cluster_rader$第五群, pointPlacement = 'on',color=col.raw[6]), list( name = "median ", data = cluster_rader$med, pointPlacement = 'on',color=col.raw[1]) ) ``` ### Summary ```{r} radar_data %>% dplyr::select(1,2,8) %>% group_by(Cluster) %>% summarise(n = n(), mean=mean(Electricity),med=median(Electricity)) %>% arrange(Cluster) %>% rbind(summarise(Cluster = "Total",radar_data,n = n(), mean=mean(Electricity),med=median(Electricity)) ) %>% datatable(options = list(pageLength = 6) ,colnames=c("Cluster", "Count", "Mean", "Median")) %>% formatRound(3:4,digits = 3) ``` Column {data-width=350} ------------------------------------- ### Outcome Cluster1 : Single Vulnerable Group 很明顯的教育程度大學以下比例相當高,且老人沒有太多扶養比相對較低的單身族群,有名的[一戶百口人的洲美里](http://www.chinatimes.com/newspapers/20150527000550-260107)在這一群中,這群的戶均用電最低。 Cluster2 : Senior Group 除了三位以上老人戶數比例偏高外,各項指標皆與總體中位數幾乎重疊,故比較起來為年齡偏高的族群。 Cluster3 :Young Working Group 無老人的比例偏高,扶養比偏低,有第二高的教育程度大學以下比例 Cluster4 :Nuclear Family 一戶一宅的比例最高,而無老人的比例最高,但扶養比表現正常,代表可能是一般常見的父母與小孩的核心家庭,是用電量是屬於偏高的族群 Cluster5 :High Educated Group 教育程度是大學以下比例最低,無老人的比例是低的,且有最高的扶養比,代表應該有部分老人也有小孩,用電量是屬於偏高的族群。 Five Groups {#comparison_T data-navmenu="Group Comparison"} ===================================== Electricity use of per household in five groups ```{r} p <- plot_ly(radar_data %>% dplyr::select(1,2,8) , y = ~Electricity, alpha = 0.1, boxpoints = "suspectedoutliers" ) p %>% add_boxplot(x = ~Cluster) ``` Cluster4 vs Cluster5 {#comparison1 data-navmenu="Group Comparison"} ===================================== Column {data-width=650} ----------------------------------------------------------------------- ### Cluster 4: Nuclear Family vs Cluster 5: High Educated Group ```{r} ## cluster 4 v.s cluster 5 highchart() %>% hc_chart(polar = TRUE, type = "line") %>% hc_title(text = "Cluster 4 vs Cluster 5") %>% hc_subtitle(text = "Nuclear Family v.s. High Educated Group", style=list( color = "#b10026", fontWeight = "bold")) %>% hc_xAxis(categories = cluster_rader$index, tickmarkPlacement = 'on', lineWidth = 0) %>% hc_yAxis(gridLineInterpolation = 'polygon', lineWidth = 0, min = 0, max = 1) %>% hc_series( list( name = "cluster 4 - Nuclear Family", data = cluster_rader$第四群, pointPlacement = 'on',color=col.raw[5]), list( name = " cluster 5 - High Educated Group", data = cluster_rader$第五群, pointPlacement = 'on',color=col.raw[6]) ) ``` Column {data-width=350} ----------------------------------------------------------------------- ### Description HIGH Electricity Utilization Nuclear Family vs High Educated Group ----- Both Cluster4 and Cluster5 are high electricity utilization regions. But we can tell the different from them. Cluster 1 vs Cluster2 {#comparison2 data-navmenu="Group Comparison"} ===================================== Column {data-width=650} ----------------------------------------------------------------------- ### Cluster 1:Single Vulnerable Group vs Cluster 3: Young Working Group ```{r} ## cluster 1 v.s cluster 3 highchart() %>% hc_chart(polar = TRUE, type = "line") %>% hc_title(text = "Cluster 1 vs Cluster 2") %>% hc_subtitle(text = "Single Vulnerable Group vs Young Working Group", style=list( color = "#b10026", fontWeight = "bold")) %>% hc_xAxis(categories = cluster_rader$index, tickmarkPlacement = 'on', lineWidth = 0) %>% hc_yAxis(gridLineInterpolation = 'polygon', lineWidth = 0, min = 0, max = 1) %>% hc_series( list( name = "cluster 1 - Single Vulnerable Group", data = cluster_rader$第一群, pointPlacement = 'on',color=col.raw[2]), list( name = " cluster 3 - Young Working Group", data = cluster_rader$第三群, pointPlacement = 'on',color=col.raw[3]) ) ``` Column {data-width=350} ----------------------------------------------------------------------- ### Description LOW Electricity Utilization Single Vulnerable Group vs Senior Group ----- Cluster 1 - Single Vulnerable Group and cluster 3 - Young Working Group are lower electricity use than total median. Radar chart {#comparison3 data-navmenu="Group Comparison"} ===================================== ### All radar chart ```{r} ## 推疊雷達圖 highchart() %>% hc_chart(polar = TRUE, type = "line") %>% hc_xAxis(categories = cluster_rader$index, tickmarkPlacement = 'on', lineWidth = 0) %>% hc_yAxis(gridLineInterpolation = 'polygon', lineWidth = 0, min = 0, max = 1) %>% hc_series( list( name = "cluster 1-Single Vulnerable Group", data = cluster_rader$第一群, pointPlacement = 'on',color=col.raw[2]), list( name = "cluster 2-Senior Group", data = cluster_rader$第二群, pointPlacement = 'on',color=col.raw[3]), list( name = "cluster 3-Young Working Group", data = cluster_rader$第三群, pointPlacement = 'on',color=col.raw[4]), list( name = "cluster 4-Nuclear Family", data = cluster_rader$第四群, pointPlacement = 'on',color=col.raw[5]), list( name = "cluster 5-High Educated Group", data = cluster_rader$第五群, pointPlacement = 'on',color=col.raw[6]), list( name = "Total median", data = cluster_rader$med, pointPlacement = 'on',color= col.raw[1]) ) ``` ClusterMap{#clustermap} ===================================== Column {data-width=600} ----------------------------------------------------------------------- ### Map Column {.tabset .tabset-fade data-width=400} ------------------------------------- ### Cluster1 ```{r} radar_data %>% dplyr::select(1,2,8) %>% filter(Cluster == "Cluster1") %>% ggplot( aes(x=Electricity)) + geom_histogram(binwidth=40, colour="black", fill="white")+ coord_cartesian(xlim = c(400,2510))+ labs(title ="Histogram of Single Vulnerable Group ", x = "Electricity utilization")#+ # geom_vline(data=cdat, aes(xintercept=rating.mean), linetype="dashed", size=1, colour="red") ``` ### Cluster2 ```{r} radar_data %>% dplyr::select(1,2,8) %>% filter(Cluster == "Cluster2") %>% ggplot( aes(x=Electricity)) + geom_histogram(binwidth=25, colour="black", fill="white")+ coord_cartesian(xlim = c(400,2510))+ labs(title ="Histogram of Senior Group ", x = "Electricity utilization") ``` ### Cluster3 ```{r} radar_data %>% dplyr::select(1,2,8) %>% filter(Cluster == "Cluster3") %>% ggplot( aes(x=Electricity)) + geom_histogram(binwidth=25, colour="black", fill="white")+ coord_cartesian(xlim = c(400,2510))+ labs(title ="Histogram of Young Working Group ", x = "Electricity utilization") ``` ### Cluster4 ```{r} radar_data %>% dplyr::select(1,2,8) %>% filter(Cluster == "Cluster4") %>% ggplot( aes(x=Electricity)) + geom_histogram(binwidth=30, colour="black", fill="white")+ coord_cartesian(xlim = c(400,2510))+ labs(title ="Histogram of Nuclear Family ", x = "Electricity utilization") ``` ### Cluster5 ```{r} radar_data %>% dplyr::select(1,2,8) %>% filter(Cluster == "Cluster5") %>% ggplot( aes(x=Electricity)) + geom_histogram(binwidth=30, colour="black", fill="white")+ coord_cartesian(xlim = c(400,2510))+ labs(title ="Histogram of High Educated Group", x = "Electricity utilization") ``` Waste of electricity{#waste} ===================================== Column {data-width=650} ----------------------------------------------------------------------- ### Map Column {data-width=350} ----------------------------------------------------------------------- ### Outcome The characteristics of the people who waste electricity ------ 1. Senior Group - High educated - High income - High variation of electricity utilization 2. Senior Group - Multiple person in one household - High variation of electricity utilization 3. Young Working Group - High income - High variation of electricity utilization 4. Nuclear Family - High educated - High income - High variation of electricity utilization 5. High Educated Group - High income - More elderly people - High variation of electricity utilization Conclusion {#conclusion} ============================

**Efficiency Evaluation**


Sidebar {.sidebar} ============================
Hi everyone,
We are **Life is struggle.**

__U-Optimizer__

Government Transparency 政府端 我們希望可以幫助政府制定有效率的節電策略,因此需要找到到底誰在浪費電,我們透過分群的方式找到用電行為相似的族群,再各群中找出用電量異常高於平均的里,最後利用決策樹找出浪費電的里有什麼樣的特徵。 使用者端 使用者可以使用我們的產品來督促自己是否為浪費電的人 ------ __Members:__ 1. [Peng-Wen,Lin (林芃彣 Nicole)-
NCCU Department of Statistics](https://www.facebook.com/profile.php?id=100000344369057) 2. [Pei Wen,Yang (楊佩雯 Penny)-
NCCU Department of Statistics](https://www.facebook.com/yangpenny0903?fref=ufi) 3. [Pei Shuan - Haung (黃培軒 Bacon)-
NCCU Department of Statistics](https://www.facebook.com/profile.php?id=100004119858241) 4. [Jia-Hau Liu (劉家豪 James)-
台大國企所,NCCU Department of Statistics](https://www.facebook.com/profile.php?id=100000914153218) 5. [Li-Jer, Lin (林立哲))-
CITIC Housing](https://www.facebook.com/sweetcow)